
platon Documentation
Release 5.3

Michael Zhang, Yayaati Chachan

Jun 28, 2021

Contents

1 Introduction 3

2 Install 5

3 Quick start 7

4 Mie scattering 11

5 Eclipse depths 13

6 Visualizer 15

7 Questions & Answers 17

8 platon 21
8.1 platon package . 21

9 Indices and tables 31

Python Module Index 33

Index 35

i

ii

platon Documentation, Release 5.3

April 18, 2020: PLATON v5.1 corresponds most closely to the version described in our second PLATON paper.

November 29, 2018: PLATON v3.0 is out! Please check the release notes on GitHub for the list of new fea-
tures. Our paper actually describes v2.1, but v3 has a substantial number of improvements, and we strongly
recommend everyone use it.

October 1, 2018: PLATON v2.0 is out! Please check the release notes for the list of new features, and upgrade.

Contents 1

platon Documentation, Release 5.3

2 Contents

CHAPTER 1

Introduction

PLATON (PLanetary Atmospheric Transmission for Observer Noobs) is a fast and easy to use forward modelling and
retrieval tool for exoplanet atmospheres. It is based on ExoTransmit by Eliza Kempton. The two main modules are:

1. TransitDepthCalculator: computes a transit spectrum for an exoplanet

2. EclipseDepthCalculator: computes an eclipse spectrum

3. CombinedRetriever: can retrieve atmospheric properties for transit depths, eclipse depths, or a combina-
tion of the two.

The transit spectrum is calculated from 300 nm to 30 um, taking into account gas absorption, collisionally induced gas
absorption, clouds, and scattering. TransitDepthCalculator is written entirely in Python and is designed for
performance. By default, it calculates transit depths on a fine wavelength grid (𝜆/∆𝜆 = 1000 with 4616 wavelength
points), which takes ~65 milliseconds on a midrange consumer computer. The user can instead specify bins which
are directly relevant to matching observational data, in which case the code avoids computing depths for irrelevant
wavelengths and is many times faster. The user can also download higher resolution data (R=10,000 or R=375,000)
from here and drop them into PLATON’s data folder; the runtime is roughly proportional to the resolution.

The eclipse spectrum is calculated with the same physics included, but it does not include scattering as a source of
emission; scattering is only included as a source of absorption.

The retrievers use TransitDepthCalculator/EclipseDepthCalculator as a forward model, and can retrieve atmospheric
properties using either MCMC or nested sampling. The speed of these retrievals is highly dependent on the wave-
length range, data precision, prior ranges, opacity resolution, and number of live points (nested sampling) or iter-
ations/walkers (MCMC). A very rough guideline is that a retrieval with 200 live points and R=1000 (suitable for
exploratory work) for STIS + WFC3 + IRAC 3.6 um + IRAC 4.5 um data takes <1 hour, while a retrieval with 1000
live points and R=10,000 (suitable for the final version) takes 1-2 days. There are a variety of ways to speed up the
retrieval, as described in our PLATON II paper. These include using correlated-k instead of opacity sampling with
R=10,000, or removing the opacity data files of unimportant molecules (thereby zeroing their opacities).

3

http://astro.caltech.edu/~mz/absorption.html

platon Documentation, Release 5.3

4 Chapter 1. Introduction

CHAPTER 2

Install

Before installing PLATON, it is highly recommended to have a fast linear algebra library (BLAS) and verify that
numpy is linked to it. This is because the heart of the radiative transfer code is a matrix multiplication operation
conducted through numpy.dot, which in turn calls a BLAS library if it can find one. If it can’t find one, your code will
be many times slower.

We recommend using Anaconda, which automatically installs BLAS libraries. If you don’t want to use Anaconda, a
good BLAS library to install on Linux is OpenBLAS. You can install it on Ubuntu with:

sudo apt install libopenblas-dev

On OS X, a good choice is Accelerate/vecLib, which should already be installed by default.

To check if your numpy is linked to BLAS, do:

numpy.__config__.show()

If blas_opt_info mentions OpenBLAS or vecLib, that’s a good sign. If it says “NOT AVAILABLE”, that’s a bad sign.

Once you have a BLAS installed and linked to numpy, download PLATON, install the requirements, and install
PLATON itself. Although it is possible to install PLATON using pip (pip install platon), the recommended method
is to clone the GitHub repository and install from there. This is because the repository includes examples, which you
don’t get when pip installing.

To install from GitHub:

git clone https://github.com/ideasrule/platon.git
cd platon/
python setup.py install

You can run unit tests to make sure everything works:

nosetests -v

The unit tests should also give you a good idea of how fast the code will be. On a decent Ubuntu machine with
OpenBLAS, it takes 3 minutes.

5

platon Documentation, Release 5.3

The default data files (in platon/data) have a wavelength resolution of R=1000, but if you want higher resolution, you
can download R=10,000 and R=375,000 data from this webpage

6 Chapter 2. Install

http://astro.caltech.edu/~mz/absorption.html

CHAPTER 3

Quick start

The fastest way to get started is to look at the examples/ directory, which has examples on how to compute tran-
sit/eclipse depths from planetary parameters, and on how to retrieve planetary parameters from transit/eclipse depths.
This page is a short summary of the more detailed examples.

To compute transit depths, look at transit_depth_example.py, then go to TransitDepthCalculator for more
info. In short:

from platon.transit_depth_calculator import TransitDepthCalculator
from platon.constants import M_jup, R_jup, R_sun

All inputs and outputs for PLATON are in SI

Rs = 1.16 * R_sun
Mp = 0.73 * M_jup
Rp = 1.40 * R_jup
T = 1200

The initializer loads all data files. Create a TransitDepthCalculator
object and hold on to it
calculator = TransitDepthCalculator(method="xsec") #"ktables" for correlated k

compute_depths is fast once data files are loaded
wavelengths, depths, info_dict = calculator.compute_depths(Rs, Mp, Rp, T, logZ=0, CO_
→˓ratio=0.53, full_output=True)

You can adjust a variety of parameters, including the metallicity (Z) and C/O ratio. By default, logZ = 0 and C/O = 0.53.
Any other value for logZ and C/O in the range -1 < logZ < 3 and 0.05 < C/O < 2 can also be used. full_output=True
indicates you’d like extra information about the atmosphere, which is returned in info_dict. info_dict includes param-
eters like the temperatures, pressures, radii, abundances, and molecular weights of each atmospheric layer, and the line
of sight optical depth (tau_los) through each layer.

You can also specify custom abundances, such as by providing the filename of one of the abundance files included
in the package (from ExoTransmit). The custom abundance files specified by the user must be compatible with the
ExoTransmit format:

7

platon Documentation, Release 5.3

calculator.compute_depths(Rs, Mp, Rp, T, logZ=None, CO_ratio=None,
custom_abundances=filename)

To retrieve atmospheric parameters, look at retrieve_multinest.py, retrieve_emcee.py, or retrieve_eclipses.py, then go
to CombinedRetriever for more info. In short:

from platon.fit_info import FitInfo
from platon.combined_retriever import CombinedRetriever

retriever = CombinedRetriever()
fit_info = retriever.get_default_fit_info(Rs, Mp, Rp, T, logZ=0, T_star=6100)

Decide what you want to fit for, and add those parameters to fit_info

Fit for the stellar radius and planetary mass using Gaussian priors. This
is a way to account for the uncertainties in the published values
fit_info.add_gaussian_fit_param('Rs', 0.02*R_sun)
fit_info.add_gaussian_fit_param('Mp', 0.04*M_jup)

Fit for other parameters using uniform priors
fit_info.add_uniform_fit_param('R', 0.9*R_guess, 1.1*R_guess)
fit_info.add_uniform_fit_param('T', 0.5*T_guess, 1.5*T_guess)
fit_info.add_uniform_fit_param("log_scatt_factor", 0, 1)
fit_info.add_uniform_fit_param("logZ", -1, 3)
fit_info.add_uniform_fit_param("log_cloudtop_P", -0.99, 5)
fit_info.add_uniform_fit_param("error_multiple", 0.5, 5)

Run nested sampling
result = retriever.run_multinest(

bins, depths, errors, #transit bins, depths, errors
None, None, None, #eclipse bins, depths, errors
fit_info, plot_best=True,
rad_method="xsec") #Change this to "ktables" for correlated k

Here, bins is a N x 2 array representing the start and end wavelengths of the bins, in metres; depths is a list of N transit
depths; and errors is a list of N errors on those transit depths. plot_best=True indicates that the best fit solution should
be plotted, along with the measured transit depths and their errors.

The example above retrieves the planetary radius (at a reference pressure of 100,000 Pa), the temperature of the
isothermal atmosphere, and the metallicity. Other parameters you can retrieve for include the stellar radius, the plan-
etary mass, C/O ratio, the cloudtop pressure, the scattering factor, the scattering slope, and the error multiple–which
multiplies all errors by a constant. We recommend either fixing the stellar radius and planetary mass to the measured
values, or setting Gaussian priors on them to account for measurement errors.

Once you get the result object, you should store the object, in addition to plotting the posterior distribution and the
best fit:

with open("example_retrieval_result.pkl", "wb") as f:
pickle.dump(result, f)

result.plot_corner("my_corner.png")
result.plot_spectrum("my_best_fit") #leave off .png

If you prefer using MCMC instead of Nested Sampling in your retrieval, you can use the run_emcee method instead of
the run_multinest method. Do note that Nested Sampling is recommended, as it is not trivial to deal with multi-modal
posteriors or to check for convergence with emcee:

8 Chapter 3. Quick start

platon Documentation, Release 5.3

result = retriever.run_emcee(bins, depths, errors, fit_info)

For MCMC, the number of walkers and iterations/steps can also be specified. The result object returned by run_emcee
is different from that returned by run_multinest, but still supports plot_corner and plot_spectrum.

9

platon Documentation, Release 5.3

10 Chapter 3. Quick start

CHAPTER 4

Mie scattering

By default, PLATON uses a parametric model to account for scattering, with an amplitude and a slope. However,
PLATON also has the ability to compute Mie scattering in place of the parametric model.

To use Mie scattering, follow Quick start to see how to do forward models and retrievals using the default parametric
model. To use Mie scattering instead:

calculator.compute_depths(Rs, Mp, Rp, T,
ri = 1.33-0.1j, frac_scale_height = 0.5, number_density = 1e9,
part_size = 1e-6, cloudtop_pressure=1e5)

This computes Mie scattering for particles with complex refractive index 1.33-0.1j. The particles follow a lognormal
size distribution with a mean radius of 1 micron and standard deviation of 0.5. They have a density of 109/𝑚3 at the
cloud-top pressure of 105 Pa, declining with altitude with a scale height of 0.5 times the gas scale height.

We also allow the computation of Mie scattering for three condensates using their actual, wavelength-dependent re-
fractive indices, assuming a standard deviation in the lognormal size distribution of 0.5:

calculator.compute_depths(Rs, Mp, Rp, T,
ri = "TiO2", frac_scale_height = 0.5, number_density = 1e9,
part_size = 1e-6, cloudtop_pressure=1e5)

The supported species are MgSiO3_sol, SiO2_amorph, and TiO2, using the refractive index data of Kitzmann et al
2017.

To retrieve Mie scattering parameters, make sure to set log_scatt_factor to 0, and log_number_density to a finite value.
n and log_k specify the real component and log10 of the imaginary component of the complex refractive index. We
recommend fixing at least n. Example:

fit_info = retriever.get_default_fit_info(Rs, Mp, Rp, T,
log_scatt_factor = 0, log_number_density = 9, n = 1.33, log_k=-1)

fit_info.add_uniform_fit_param('log_number_density', 5, 15)
fit_info.add_uniform_fit_param('log_part_size', -7, -4)

11

https://arxiv.org/abs/1710.04946
https://arxiv.org/abs/1710.04946

platon Documentation, Release 5.3

12 Chapter 4. Mie scattering

CHAPTER 5

Eclipse depths

Although PLATON began life as a transmission spectrum calculator, we have also written an eclipse depth calculator
and retriever.

To use the eclipse depth calculator, first create a temperature-pressure profile:

from platon.TP_profile import Profile
p = Profile()
p.set_from_radiative_solution(T_star, Rs, a, Mp, Rp, beta, log_k_th, log_gamma, log_
→˓gamma2, alpha, T_int)

This creates a parametric T-P profile according to Line et al 2013, which is an extension of the Guillot et al 2010
parameterization. We recommend the use of this profile.

Alternatively:

from platon.TP_profile import Profile
p = Profile()
p.set_parametric(1200, 500, 0.5, 0.6, 1e6, 1900)

This creates a parametric T-P profile according to Madhusudhan & Seager 2009. The parameters are: T0, P1, 𝛼1, 𝛼2,
P3, T3. P0 is set to 10-4 Pa, while P2 and T2 are derived from the six specified parameters.

Then, call the eclipse depth calculator:

from platon.eclipse_depth_calculator import EclipseDepthCalculator
calc = EclipseDepthCalculator(method="xsec") #"ktables" for correlated k
wavelengths, depths = calc.compute_depths(p, Rs, Mp, Rp, Tstar)

Most of the same parameters accepted by the transit depth calculator are also accepted by the eclipse depth calculator.

It is also possible to retrieve on combined transit and eclipse depths:

from platon.combined_retriever import CombinedRetriever

retriever = CombinedRetriever()

(continues on next page)

13

https://arxiv.org/pdf/1304.5561.pdf
https://arxiv.org/pdf/0910.1347.pdf

platon Documentation, Release 5.3

(continued from previous page)

fit_info = retriever.get_default_fit_info(Rs, Mp, Rp, T_limb,
T0=1200, P1=500, alpha1=0.5, alpha2=0.6, P3=1e6, T3=1900)

fit_info.add_uniform_fit_param(...)
fit_info.add_uniform_fit_param(...)

result = retriever.run_multinest(transit_bins, transit_depths, transit_errors,
eclipse_bins, eclipse_depths, eclipse_errors,
fit_info,
rad_method="xsec") #"ktables" for corr-k

Here, T_limb is the temperature at the planetary limb (used for transit depths), while the T-P profile parameters are for
the dayside (used for eclipse depths).

To do an eclipse-only retrieval, set transit_bins, transit_depths, and transit_errors to None, and likewise to do a transit-
only retrieval.

14 Chapter 5. Eclipse depths

CHAPTER 6

Visualizer

If you want to see what your exoplanet might look like in transit, the Visualizer module is for you! Visualizer uses the
absorption profile calculated by the transit depth calculator, which you can get using:

calculator = TransitDepthCalculator()
wavelengths, depths, info = calculator.compute_depths(Rs, Mp, Rp, T, full_output=True)

Then, to draw an image:

color_bins = 1e-6 * np.array([
[4, 5],
[3.2, 4],
[1.1, 1.7]])

visualizer = Visualizer()
image, m_per_pix = visualizer.draw(info, color_bins, method='disk')

This maps all wavelengths between 4–5 microns to red, while 3.2–4 microns maps to green and 4–5 microns maps to
blue. The draw function returns an image and an image scale, in meters per pixel. The image can be displayed with
pyplot:

plt.imshow(image)

The ‘method’ argument can either be ‘disk’ or ‘layers’. The difference is illustrated
in the example images below. For purely aesthetic purposes, we have also made the
star light a pale yellow color by passing [1,1,0.8] to the star_color argument of draw.

Fig. 1: 55 Cnc e as a 1D profile

15

platon Documentation, Release 5.3

Fig. 2: 55 Cnc e as a disk transiting
a yellow star

16 Chapter 6. Visualizer

CHAPTER 7

Questions & Answers

This document describes niche use cases that the Quick Start does not cover. For typical usage patterns, consult the
files in examples/ and the Quick Start, in that order.

• What physics does PLATON take into account?

We account for gas absorption, collisional absorption, an opaque cloud deck, and scattering with user-specified
slope and amplitude (or Rayleigh, if not specified). H- bound-free and free-free absorption is not enabled
by default, but can be turned on by passing add_H_minus_absorption=True to compute_depths. 34 chem-
ical species are included in our calculations, namely the ones listed in data/species_info. The abundances
of these species were calculated using GGchem for a grid of metallicity, C/O ratio, temperature, and pres-
sure, assuming equilibrium chemistry with or without condensation. Condensation can be toggled using in-
clude_condensation=True/False. Metallicity ranges from 0.1-1000x solar, C/O ratio from 0.05 to 2, temperature
from 200 to 3000 K, and pressure from 10^-4 to 10^8 Pa. If you wander outside these limits, PLATON will
throw a ValueError.

• How do I specify custom abundances and T/P profiles?

By example:

from platon.abundance_getter import AbundanceGetter
from platon.transit_depth_calculator import TransitDepthCalculator

_, pressures, temperatures = np.loadtxt("t_p_1200K.dat", skiprows=1, unpack=True)

These files are found in examples/custom_abundances. They are equivalent
to the ExoTransmit EOS files, except that COS is renamed to OCS. They provide
the abundance at every pressure and temperature grid point. To create your
own, see the documentation for custom_abundances in
#:func:`~platon.transit_depth_calculator.TransitDepthCalculator.compute_depths`
abundances = AbundanceGetter.from_file("abund_1Xsolar_cond.dat")

Alternatively, one can set vertically constant abundances for some species by getting the equilibrium abun-
dances, then modifying them

17

platon Documentation, Release 5.3

from platon.abundance_getter import AbundanceGetter
getter = AbundanceGetter()
Solar logZ and C/O ratio. Modify as required.
abundances = getter.get(0, 0.53)

Zero out CO. (Note that if CO is a major component, you should probably
renormalize the abundances of other species so that they add up to 1.)
abundances["CO"] *= 0

Set CH4 abundance to a constant throughout the atmosphere
abundances["CH4"] *= 0
abundances["CH4"] += 1e-5

• How do I do check what effect a species has on the transit spectrum? Use the method above to zero out
abundances of one species at a time. Then call compute_depths with logZ and CO_ratio set to None:

calculator.compute_depths(star_radius, planet_mass, planet_radius, temperature,
logZ=None, CO_ratio=None, custom_abundances=abundances)

Alternatively, you can delete absorption coefficients from PLATON_DIR/platon/data/Absorption, which has the
effect of zeroing the opacity of those molecules.

• Which parameters are supported in retrieval? See the documentation for get_default_fit_info().
All arguments to this method are possible fit parameters. However, we recommend not fitting for T_star, as it
has a very small effect on the result to begin with. Mp and Rs are usually measured to greater precision than you
can achieve in a fit, but we recommend fitting them with Gaussian priors to take into account the measurement
errors.

• Should I use run_multinest, or run_emcee?

That depends on whether you like nested sampling or MCMC! We recommend nested sampling because it
handles multimodal distributions more robustly, and because it has a stopping criterion. With emcee, checking
for convergence is highly non-trivial.

• My corner plots look ugly. What do I do?

If you’re using nested sampling, increase the number of live points. This will increase the number of samples
your corner plot is generated from:

By default, npoints is 100
result = retriever.run_multinest(bins, depths, errors, fit_info, npoints=1000)

If you’re using MCMC, increase nsteps from the default of 1000 to 10,000.

• How do I get statistics from the retrieval?

Look at BestFit.txt. It’ll have the 16th, 50th, and 84th percentiles of all parameters, as well as the best fit values.

• How do I retrieve individual species abundances? You can’t. While this would be trivial to implement–and
you can do so if you really need to–it could easily lead to combinations of species that are unstable on very short
timescales. We have therefore decided not to support retrieving on individual abundances.

• PLATON is still too slow! How do I make it faster?

If you didn’t follow the installation instructions, go back and re-read them. Make sure you have OpenBLAS,
MKL, or another basic linear algebra library (BLAS) installed and linked to numpy.

If PLATON is still too slow, try decreasing num_profile_heights in transit_depth_calculator.py (for transit
depths) or TP_profile (for eclipse depths). Of course, this comes at the expense of accuracy. You can also
delete some of the files in data/Absorption that correspond to molecules which contribute negligible opacity.
This has the effect of setting their absorption cross section to 0.

18 Chapter 7. Questions & Answers

platon Documentation, Release 5.3

In some cases, nested sampling becomes extremely inefficient with the default sampling method. In those cases,
pass sample=”rwalk” to run_multinest, which will cap the sampling efficiency at 1/25, 25 being the number of
random walks to take. According to the dynesty documentation, 25 should be sufficient at low dimensionality
(<=10), but 50 might be necessary at moderate dimensionality (10-20). To change the number of random walks
to 50, pass walks=50.

• How small can I set my wavelength bins? The error in the opacity sampling calculation for a given reason-
ably small bin is equal to the standard deviation of the transit/eclipse depths in that bin divided by sqrt(N),
where N is the number of points in the bin. With the default opacity resolution of R=1000, N = 1000 *
(ln(max_wavelength/min_wavelength)). We recommend that you keep N above 10 to avoid unreasonably large
errors. PLATON will throw a warning for N <= 5.

• What opacity resolution should I use? How many live points This is a tradeoff between running time and
accuracy. Roughly speaking, the running time is proportional to the resolution and to the number of live points.

We recommend a staged approach to retrievals. Exploratory data analysis can be done with R=1000 opacities
and 200 live points. In the process, intermittent spot checks should be performed with R=10,000 opacities and
200 live points to check the effect of resolution, and with R=1000 opacities and 1000 live points to check the
effect of sparse sampling. When one is satisfied with the exploratory data analysis and is ready to finalize the
results, one should run a final retrieval with R=10,000 opacities and 1000 live points. This is the approach
we followed for HD 189733b, although had we stuck with the low-resolution, sparsely sampled retrieval, our
posteriors would have been slightly broader, but none of our conclusions would have changed.

19

platon Documentation, Release 5.3

20 Chapter 7. Questions & Answers

CHAPTER 8

platon

8.1 platon package

8.1.1 Submodules

8.1.2 platon.TP_profile module

class platon.TP_profile.Profile(num_profile_heights=250, min_P=0.0001,
max_P=100000000.0)

Bases: object

__init__(num_profile_heights=250, min_P=0.0001, max_P=100000000.0)
Initialize self. See help(type(self)) for accurate signature.

set_from_arrays(P_profile, T_profile)

set_from_opacity(T_irr, info_dict, visible_cutoff=8e-07, T_int=100)

set_from_params_dict(profile_type, params_dict)

set_from_radiative_solution(T_star, Rs, a, Mp, Rp, beta, log_k_th, log_gamma,
log_gamma2=None, alpha=0, T_int=100, **ignored_kwargs)

From Line et al. 2013: http://adsabs.harvard.edu/abs/2013ApJ. . . 775..137L, Equation 13 - 16

set_isothermal(T_day)

set_parametric(T0, P1, alpha1, alpha2, P3, T3)
Parametric model from https://arxiv.org/pdf/0910.1347.pdf

8.1.3 platon.abundance_getter module

class platon.abundance_getter.AbundanceGetter(include_condensation=True)
Bases: object

21

http://adsabs.harvard.edu/abs/2013ApJ...775..137L
https://arxiv.org/pdf/0910.1347.pdf

platon Documentation, Release 5.3

__init__(include_condensation=True)
Initialize self. See help(type(self)) for accurate signature.

static from_file(filename)
Reads abundances file in the ExoTransmit format (called “EOS” files in ExoTransmit), returning a dictio-
nary mapping species name to an abundance array of dimension

get(logZ, CO_ratio=0.53)
Get an abundance grid at the specified logZ and C/O ratio. This abundance grid can be passed to Transit-
DepthCalculator, with or without modifications. The end user should not need to call this except in rare
cases.

Returns abundances – A dictionary mapping species name to a 2D abundance array, specifying
the number fraction of the species at a certain temperature and pressure.

Return type dict of np.ndarray

is_in_bounds(logZ, CO_ratio, T)
Check to see if a certain metallicity, C/O ratio, and temperature combination is within the supported bounds

8.1.4 platon.combined_retriever module

class platon.combined_retriever.CombinedRetriever
Bases: object

static get_default_fit_info(Rs, Mp, Rp, T=None, logZ=0, CO_ratio=0.53,
log_cloudtop_P=inf, log_scatt_factor=0, scatt_slope=4,
error_multiple=1, T_star=None, T_spot=None,
spot_cov_frac=None, frac_scale_height=1,
log_number_density=-inf, log_part_size=-6, n=None,
log_k=-inf, log_P_quench=-99, wfc3_offset_transit=0,
wfc3_offset_eclipse=0, profile_type=’isothermal’, **pro-
file_kwargs)

Get a FitInfo object filled with best guess values. A few parameters are required, but others can be set to
default values if you do not want to specify them. All parameters are in SI. For information on the param-
eters not described below, see the documentation for compute_depths() and compute_depths()

Parameters

• n (float) – Real component of the refractive index of haze particles. Set to None to disable
Mie scattering

• log_k (float) – log10 of the imaginary component of the refractive index of haze particles.
Set to -np.inf for k=0

• wfc3_offset_transit (float) – Offset of WFC3 transit data, which PLATON identifies by
wavelength (everything between 1 and 1.7 um is assumed to be WFC3). A positive offset
means the observed transit depths are decreased before comparing to the model.

• wfc3_offset_eclipse (float) – Same as above, but for eclipse depths.

• profile_type (string) – “isothermal”, “parametric” (Madhusudhan & Seager 2009) or “ra-
diative_solution” (Line et al 2013) T/P profile parameterizations. This profile applies to
the dayside only, and hence is only relevant for eclipse depths.

• profile_kwargs (kwargs) – T/P profile arguments. For “isothermal”: T_day. For “para-
metric”: T0, P1, alpha1, alpha2, P3, T3. For “radiative_solution”: T_star, Rs, a, Mp, Rp,
beta, log_k_th, log_gamma, log_gamma2, alpha, and T_int (optional). We recommend
that T_star, Rs, a, and Mp be fixed, and that T_int be omitted (which sets it to 100 K).

22 Chapter 8. platon

platon Documentation, Release 5.3

Returns fit_info – This object is used to indicate which parameters to fit for, which to fix, and
what values all parameters should take.

Return type FitInfo object

pretty_print(fit_info)

run_emcee(transit_bins, transit_depths, transit_errors, eclipse_bins, eclipse_depths, eclipse_errors,
fit_info, nwalkers=50, nsteps=1000, include_condensation=True, rad_method=’xsec’,
num_final_samples=100)

Runs affine-invariant MCMC to retrieve atmospheric parameters.

Parameters

• transit_bins (array_like, shape (N,2)) – Wavelength bins, where wavelength_bins[i][0] is
the start wavelength and wavelength_bins[i][1] is the end wavelength for bin i.

• transit_depths (array_like, length N) – Measured transit depths for the specified wave-
length bins

• transit_errors (array_like, length N) – Errors on the aforementioned transit depths

• eclipse_bins (array_like, shape (N,2)) – Wavelength bins, where wavelength_bins[i][0] is
the start wavelength and wavelength_bins[i][1] is the end wavelength for bin i.

• eclipse_depths (array_like, length N) – Measured eclipse depths for the specified wave-
length bins

• eclipse_errors (array_like, length N) – Errors on the aforementioned eclipse depths

• fit_info (FitInfo object) – Tells the method what parameters to freely vary, and in what
range those parameters can vary. Also sets default values for the fixed parameters.

• nwalkers (int, optional) – Number of walkers to use

• nsteps (int, optional) – Number of steps that the walkers should walk for

• include_condensation (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• rad_method (string, optional) – “xsec” for opacity sampling, “ktables” for correlated k

Returns result

Return type RetrievalResult object

run_multinest(transit_bins, transit_depths, transit_errors, eclipse_bins, eclipse_depths,
eclipse_errors, fit_info, include_condensation=True, rad_method=’xsec’,
maxiter=None, maxcall=None, nlive=100, num_final_samples=100,
**dynesty_kwargs)

Runs nested sampling to retrieve atmospheric parameters.

Parameters

• transit_bins (array_like, shape (N,2)) – Wavelength bins, where wavelength_bins[i][0] is
the start wavelength and wavelength_bins[i][1] is the end wavelength for bin i.

• transit_depths (array_like, length N) – Measured transit depths for the specified wave-
length bins

• transit_errors (array_like, length N) – Errors on the aforementioned transit depths

• eclipse_bins (array_like, shape (N,2)) – Wavelength bins, where wavelength_bins[i][0] is
the start wavelength and wavelength_bins[i][1] is the end wavelength for bin i.

8.1. platon package 23

platon Documentation, Release 5.3

• eclipse_depths (array_like, length N) – Measured eclipse depths for the specified wave-
length bins

• eclipse_errors (array_like, length N) – Errors on the aforementioned eclipse depths

• fit_info (FitInfo object) – Tells us what parameters to freely vary, and in what range
those parameters can vary. Also sets default values for the fixed parameters.

• include_condensation (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• rad_method (string, optional) – “xsec” for opacity sampling, “ktables” for correlated k

• nlive (int) – Number of live points to use for nested sampling

• **dynesty_kwargs (keyword arguments to pass to dynesty’s NestedSampler)

Returns result

Return type RetrievalResult object

8.1.5 platon.constants module

platon.constants.AU = 149597870700.0
Astronomical unit

platon.constants.M_earth = 5.97236e+24
Earth mass

platon.constants.M_jup = 1.89819e+27
Jupiter mass

platon.constants.M_sun = 1.98848e+30
Solar mass

platon.constants.R_earth = 6378100.0
Earth radius

platon.constants.R_jup = 71492000.0
Jupiter radius

platon.constants.R_sun = 695700000.0
Solar radius

8.1.6 platon.eclipse_depth_calculator module

class platon.eclipse_depth_calculator.EclipseDepthCalculator(include_condensation=True,
method=’xsec’)

Bases: object

__init__(include_condensation=True, method=’xsec’)
All physical parameters are in SI.

Parameters

• include_condensation (bool) – Whether to use equilibrium abundances that take conden-
sation into account.

• num_profile_heights (int) – The number of zones the atmosphere is divided into

• ref_pressure (float) – The planetary radius is defined as the radius at this pressure

24 Chapter 8. platon

platon Documentation, Release 5.3

• method (string) – “xsec” for opacity sampling, “ktables” for correlated k

change_wavelength_bins(bins)
Same functionality as change_wavelength_bins()

compute_depths(t_p_profile, star_radius, planet_mass, planet_radius, T_star, logZ=0,
CO_ratio=0.53, add_gas_absorption=True, add_H_minus_absorption=False,
add_scattering=True, scattering_factor=1, scattering_slope=4,
scattering_ref_wavelength=1e-06, add_collisional_absorption=True,
cloudtop_pressure=inf, custom_abundances=None, T_spot=None,
spot_cov_frac=None, ri=None, frac_scale_height=1, number_density=0,
part_size=1e-06, part_size_std=0.5, P_quench=1e-99, stellar_blackbody=False,
full_output=False)

Most parameters are explained in compute_depths()

Parameters t_p_profile (Profile) – A Profile object from TP_profile

8.1.7 platon.errors module

exception platon.errors.AtmosphereError
Bases: Exception

8.1.8 platon.fit_info module

class platon.fit_info.FitInfo(guesses_dict)
Bases: object

__init__(guesses_dict)
Initialize self. See help(type(self)) for accurate signature.

add_gaussian_fit_param(name, std, low_guess=None, high_guess=None)
Fit for the parameter name using a Gaussian prior with standard deviation std. If using emcee, the walk-
ers’ initial values for this parameter are randomly selected to be between low_guess and high_guess. If
low_guess is None, it is set to mean-2*std; if high_guess is None, it is set to mean+2*std.

add_uniform_fit_param(name, low_lim, high_lim, low_guess=None, high_guess=None)
Fit for the parameter name using a uniform prior between low_lim and high_lim. If using emcee, the
walkers’ initial values for this parameter are randomly selected to be between low_guess and high_guess.
If not specified, low_guess is set to low_lim, and similarly with high_guess.

8.1.9 platon.retriever module

class platon.retriever.Retriever
Bases: object

__init__()
Initialize self. See help(type(self)) for accurate signature.

static get_default_fit_info(Rs, Mp, Rp, T, logZ=0, CO_ratio=0.53, log_cloudtop_P=inf,
log_scatt_factor=0, scatt_slope=4, error_multiple=1,
T_star=None, T_spot=None, spot_cov_frac=None,
frac_scale_height=1, log_number_density=-inf,
log_part_size=-6, n=None, log_k=-inf, log_P_quench=-99,
part_size_std=0.5, wfc3_offset_transit=0)

Get a FitInfo object filled with best guess values. A few parameters are required, but others can be

8.1. platon package 25

platon Documentation, Release 5.3

set to default values if you do not want to specify them. All parameters are in SI. For information on the
parameters, see the documentation for compute_depths()

Returns fit_info – This object is used to indicate which parameters to fit for, which to fix, and
what values all parameters should take.

Return type FitInfo object

run_emcee(wavelength_bins, depths, errors, fit_info, nwalkers=50, nsteps=1000, in-
clude_condensation=True, rad_method=’xsec’, plot_best=False)

Runs affine-invariant MCMC to retrieve atmospheric parameters.

Parameters

• wavelength_bins (array_like, shape (N,2)) – Wavelength bins, where wave-
length_bins[i][0] is the start wavelength and wavelength_bins[i][1] is the end wavelength
for bin i.

• depths (array_like, length N) – Measured transit depths for the specified wavelength bins

• errors (array_like, length N) – Errors on the aforementioned transit depths

• fit_info (FitInfo object) – Tells the method what parameters to freely vary, and in what
range those parameters can vary. Also sets default values for the fixed parameters.

• nwalkers (int, optional) – Number of walkers to use

• nsteps (int, optional) – Number of steps that the walkers should walk for

• include_condensation (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• plot_best (bool, optional) – If True, plots the best fit model with the data

Returns result – This returns emcee’s EnsembleSampler object. The most useful attributes in
this item are result.chain, which is a (W x S X P) array where W is the number of walk-
ers, S is the number of steps, and P is the number of parameters; and result.lnprobability,
a (W x S) array of log probabilities. For your convenience, this object also contains re-
sult.flatchain, which is a (WS x P) array where WS = W x S is the number of samples; and
result.flatlnprobability, an array of length WS

Return type EnsembleSampler object

run_multinest(wavelength_bins, depths, errors, fit_info, include_condensation=True,
rad_method=’xsec’, plot_best=False, maxiter=None, maxcall=None, nlive=100,
**dynesty_kwargs)

Runs nested sampling to retrieve atmospheric parameters.

Parameters

• wavelength_bins (array_like, shape (N,2)) – Wavelength bins, where wave-
length_bins[i][0] is the start wavelength and wavelength_bins[i][1] is the end wavelength
for bin i.

• depths (array_like, length N) – Measured transit depths for the specified wavelength bins

• errors (array_like, length N) – Errors on the aforementioned transit depths

• fit_info (FitInfo object) – Tells us what parameters to freely vary, and in what range
those parameters can vary. Also sets default values for the fixed parameters.

• include_condensation (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• plot_best (bool, optional) – If True, plots the best fit model with the data

26 Chapter 8. platon

platon Documentation, Release 5.3

• nlive (int) – Number of live points to use for nested sampling

• **dynesty_kwargs (keyword arguments to pass to dynesty’s NestedSampler)

Returns result – This returns ‘results’ of the NestedSampler object. It is dictionary-like and has
many useful items. For example, result.samples (or alternatively, result[“samples”]) are the
parameter values of each sample, result.weights contains the weights, and result.logl contains
the log likelihoods. result.logz is the natural logarithm of the evidence.

Return type Result object

8.1.10 platon.transit_depth_calculator module

class platon.transit_depth_calculator.TransitDepthCalculator(include_condensation=True,
num_profile_heights=250,
ref_pressure=100000.0,
method=’xsec’)

Bases: object

__init__(include_condensation=True, num_profile_heights=250, ref_pressure=100000.0,
method=’xsec’)

All physical parameters are in SI.

Parameters

• include_condensation (bool) – Whether to use equilibrium abundances that take conden-
sation into account.

• num_profile_heights (int) – The number of zones the atmosphere is divided into

• ref_pressure (float) – The planetary radius is defined as the radius at this pressure

• method (string) – “xsec” for opacity sampling, “ktables” for correlated k

change_wavelength_bins(bins)
Specify wavelength bins, instead of using the full wavelength grid in self.lambda_grid. This makes the
code much faster, as compute_depths will only compute depths at wavelengths that fall within a bin.

Parameters bins (array_like, shape (N,2)) – Wavelength bins, where bins[i][0] is the start wave-
length and bins[i][1] is the end wavelength for bin i. If bins is None, resets the calculator to
its unbinned state.

Raises NotImplementedError – Raised when change_wavelength_bins is called more than
once, which is not supported.

compute_depths(star_radius, planet_mass, planet_radius, temperature, logZ=0,
CO_ratio=0.53, add_gas_absorption=True, add_H_minus_absorption=False,
add_scattering=True, scattering_factor=1, scattering_slope=4,
scattering_ref_wavelength=1e-06, add_collisional_absorption=True, cloud-
top_pressure=inf, custom_abundances=None, custom_T_profile=None, cus-
tom_P_profile=None, T_star=None, T_spot=None, spot_cov_frac=None,
ri=None, frac_scale_height=1, number_density=0, part_size=1e-06,
part_size_std=0.5, P_quench=1e-99, full_output=False, min_abundance=1e-
99, min_cross_sec=1e-99, stellar_blackbody=False)

Computes transit depths at a range of wavelengths, assuming an isothermal atmosphere. To choose bins,
call change_wavelength_bins().

Parameters

• star_radius (float) – Radius of the star

• planet_mass (float) – Mass of the planet, in kg

8.1. platon package 27

platon Documentation, Release 5.3

• planet_radius (float) – Radius of the planet at 100,000 Pa. Must be in metres.

• temperature (float) – Temperature of the isothermal atmosphere, in Kelvin

• logZ (float) – Base-10 logarithm of the metallicity, in solar units

• CO_ratio (float, optional) – C/O atomic ratio in the atmosphere. The solar value is 0.53.

• add_gas_absorption (float, optional) – Whether gas absorption is accounted for

• add_H_minus_absorption (float, optional) – Whether H- bound-free and free-free ab-
sorption is added in

• add_scattering (bool, optional) – whether Rayleigh scattering is taken into account

• scattering_factor (float, optional) – if add_scattering is True, make scattering this many
times as strong. If scattering_slope is 4, corresponding to Rayleigh scattering, the ab-
sorption coefficients are simply multiplied by scattering_factor. If slope is not 4, scatter-
ing_factor is defined such that the absorption coefficient is that many times as strong as
Rayleigh scattering at scattering_ref_wavelength.

• scattering_slope (float, optional) – Wavelength dependence of scattering, with 4 being
Rayleigh.

• scattering_ref_wavelength (float, optional) – Scattering is scattering_factor as strong as
Rayleigh at this wavelength, expressed in metres.

• add_collisional_absorption (float, optional) – Whether collisionally induced absorption
is taken into account

• cloudtop_pressure (float, optional) – Pressure level (in Pa) below which light cannot
penetrate. Use np.inf for a cloudless atmosphere.

• custom_abundances (str or dict of np.ndarray, optional) – If specified, overrides logZ
and CO_ratio. Can specify a filename, in which case the abundances are read from a file
in the format of the EOS/ files. These are identical to ExoTransmit’s EOS files. It is also
possible, though highly discouraged, to specify a dictionary mapping species names to
numpy arrays, so that custom_abundances[‘Na’][3,4] would mean the fractional number
abundance of Na at a temperature of self.T_grid[3] and pressure of self.P_grid[4].

• custom_T_profile (array-like, optional) – If specified and custom_P_profile is also speci-
fied, divides the atmosphere into user-specified P/T points, instead of assuming an isother-
mal atmosphere with T = temperature.

• custom_P_profile (array-like, optional) – Must be specified along with custom_T_profile
to use a custom P/T profile. Pressures must be in Pa.

• T_star (float, optional) – Effective temperature of the star. If you specify this and use
wavelength binning, the wavelength binning becomes more accurate.

• T_spot (float, optional) – Effective temperature of the star spots. This can be used to make
wavelength dependent correction to the observed transit depths.

• spot_cov_frac (float, optional) – The spot covering fraction of the star by area. This can
be used to make wavelength dependent correction to the transit depths.

• ri (complex, optional) – Complex refractive index n - ik (where k > 0) of the particles
responsible for Mie scattering. If provided, Mie scattering will be computed. In that
case, scattering_factor and scattering_slope must be set to 1 and 4 (the default values)
respectively.

28 Chapter 8. platon

platon Documentation, Release 5.3

• frac_scale_height (float, optional) – The number density of Mie scattering particles is
proportional to P^(1/frac_scale_height). This is similar to, but a bit different from, saying
that the scale height of the particles is frac_scale_height times that of the gas.

• number_density (float, optional) – The number density (in m^-3) of Mie scattering parti-
cles

• part_size (float, optional) – The mean radius of Mie scattering particles. The distribution
is assumed to be log-normal, with a standard deviation of part_size_std

• part_size_std (float, optional) – The geometric standard deviation of particle radii. We
recommend leaving this at the default value of 0.5.

• P_quench (float, optional) – Quench pressure in Pa.

• stellar_blackbody (bool, optional) – Whether to use a PHOENIX model for the stellar
spectrum, or a blackbody

• full_output (bool, optional) – If True, returns info_dict as a third return value.

Raises ValueError – Raised when invalid parameters are passed to the method

Returns

• wavelengths (array of float) – Central wavelengths, in metres

• transit_depths (array of float) – Transit depths at wavelengths

• info_dict (dict) – Returned if full_output is True, containing intermediate quanti-
ties calculated by the method. These are: absorption_coeff_atm, tau_los, stel-
lar_spectrum, radii, P_profile, T_profile, mu_profile, atm_abundances, unbinned_depths,
unbinned_wavelengths

8.1.11 platon.visualizer module

class platon.visualizer.Visualizer(size=1000)
Bases: object

__init__(size=1000)
Initializes the visualizer.

Parameters size (int) – size x size is the size of the image to draw

draw(transit_info, color_bins, star_color=[1, 1, 1], method=’disk’, star_radius=None,
star_margin=0.5, max_dist=None, blur_std=1)

Draws an image of a transiting exoplanet.

Parameters

• transit_info (dict) – the dictionary returned by compute_depths in TransitDepthCalculator
when full_output = True

• color_bins (array-like, shape (3,2)) – Wavelength bins to use for the R, G, B channels. For
example, if color_bins[0] is [3e-6, 4e-6], the red channel will reflect all light transmitted
through the atmosphere between 3 and 4 microns.

• star_color (array-like, length 3, optional) – R, G, B values of the star light, with [1,1,1]
being white

• method (str, optional) – Either ‘disk’ to draw the entire planetary disk with atmosphere,
or ‘layers’ to draw a 1D atmospheric profile–essentially an extreme zoom-in on the disk.

8.1. platon package 29

platon Documentation, Release 5.3

• star_radius (float, optional) – Stellar radius, in meters. If given, the stellar limb will be
drawn

• star_margin (float, optional) – Distance from left side of canvas to stellar limb is
star_margin * max_dist

• max_dist (float, optional) – Maximum distance from planet center to draw, in meters

• blur_std (float, optional) – STD of Gaussian blur to apply, in pixels

Returns canvas – The image of the planet. Can be displayed with plt.imshow()

Return type array, shape (self.size, self.size, 3)

8.1.12 Module contents

30 Chapter 8. platon

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

31

platon Documentation, Release 5.3

32 Chapter 9. Indices and tables

Python Module Index

p
platon, 30
platon.abundance_getter, 21
platon.combined_retriever, 22
platon.constants, 24
platon.eclipse_depth_calculator, 24
platon.errors, 25
platon.fit_info, 25
platon.retriever, 25
platon.TP_profile, 21
platon.transit_depth_calculator, 27
platon.visualizer, 29

33

platon Documentation, Release 5.3

34 Python Module Index

Index

Symbols
__init__() (platon.TP_profile.Profile method), 21
__init__() (platon.abundance_getter.AbundanceGetter

method), 21
__init__() (platon.eclipse_depth_calculator.EclipseDepthCalculator

method), 24
__init__() (platon.fit_info.FitInfo method), 25
__init__() (platon.retriever.Retriever method), 25
__init__() (platon.transit_depth_calculator.TransitDepthCalculator

method), 27
__init__() (platon.visualizer.Visualizer method), 29

A
AbundanceGetter (class in pla-

ton.abundance_getter), 21
add_gaussian_fit_param() (pla-

ton.fit_info.FitInfo method), 25
add_uniform_fit_param() (platon.fit_info.FitInfo

method), 25
AtmosphereError, 25
AU (in module platon.constants), 24

C
change_wavelength_bins() (pla-

ton.eclipse_depth_calculator.EclipseDepthCalculator
method), 25

change_wavelength_bins() (pla-
ton.transit_depth_calculator.TransitDepthCalculator
method), 27

CombinedRetriever (class in pla-
ton.combined_retriever), 22

compute_depths() (pla-
ton.eclipse_depth_calculator.EclipseDepthCalculator
method), 25

compute_depths() (pla-
ton.transit_depth_calculator.TransitDepthCalculator
method), 27

D
draw() (platon.visualizer.Visualizer method), 29

E
EclipseDepthCalculator (class in pla-

ton.eclipse_depth_calculator), 24

F
FitInfo (class in platon.fit_info), 25
from_file() (platon.abundance_getter.AbundanceGetter

static method), 22

G
get() (platon.abundance_getter.AbundanceGetter

method), 22
get_default_fit_info() (pla-

ton.combined_retriever.CombinedRetriever
static method), 22

get_default_fit_info() (pla-
ton.retriever.Retriever static method), 25

I
is_in_bounds() (pla-

ton.abundance_getter.AbundanceGetter
method), 22

M
M_earth (in module platon.constants), 24
M_jup (in module platon.constants), 24
M_sun (in module platon.constants), 24

P
platon (module), 30
platon.abundance_getter (module), 21
platon.combined_retriever (module), 22
platon.constants (module), 24
platon.eclipse_depth_calculator (module),

24
platon.errors (module), 25

35

platon Documentation, Release 5.3

platon.fit_info (module), 25
platon.retriever (module), 25
platon.TP_profile (module), 21
platon.transit_depth_calculator (module),

27
platon.visualizer (module), 29
pretty_print() (pla-

ton.combined_retriever.CombinedRetriever
method), 23

Profile (class in platon.TP_profile), 21

R
R_earth (in module platon.constants), 24
R_jup (in module platon.constants), 24
R_sun (in module platon.constants), 24
Retriever (class in platon.retriever), 25
run_emcee() (platon.combined_retriever.CombinedRetriever

method), 23
run_emcee() (platon.retriever.Retriever method), 26
run_multinest() (pla-

ton.combined_retriever.CombinedRetriever
method), 23

run_multinest() (platon.retriever.Retriever
method), 26

S
set_from_arrays() (platon.TP_profile.Profile

method), 21
set_from_opacity() (platon.TP_profile.Profile

method), 21
set_from_params_dict() (pla-

ton.TP_profile.Profile method), 21
set_from_radiative_solution() (pla-

ton.TP_profile.Profile method), 21
set_isothermal() (platon.TP_profile.Profile

method), 21
set_parametric() (platon.TP_profile.Profile

method), 21

T
TransitDepthCalculator (class in pla-

ton.transit_depth_calculator), 27

V
Visualizer (class in platon.visualizer), 29

36 Index

	Introduction
	Install
	Quick start
	Mie scattering
	Eclipse depths
	Visualizer
	Questions & Answers
	platon
	platon package

	Indices and tables
	Python Module Index
	Index

