
platon Documentation
Release 1.0alpha

Michael Zhang, Yayaati Chachan, Eliza Kempton

Jun 05, 2018

Contents

1 Introduction 1

2 Install 3

3 Quick start 5

4 platon 7
4.1 platon package . 7

5 Indices and tables 11

Python Module Index 13

i

ii

CHAPTER 1

Introduction

PLATON (PLanetary Atmospheric Transmission for Observer Noobs) is a fast and easy to use forward modelling and
retrieval tool for exoplanet atmospheres. It is based on ExoTransmit by Eliza Kempton. The two main modules are:

1. TransitDepthCalculator: computes a transit spectrum for an exoplanet

2. Retriever: retrieves atmospheric properties of an exoplanet, given the observed transit spectrum. The prop-
erties that can be retrieved are metallicity, C/O ratio, cloudtop pressure, scattering strength, and scattering slope

The transit spectrum is calculating from 300 nm to 30 um, taking into account gas absorption, collisionally induced
gas absorption, and Rayleigh scattering. TransitDepthCalculator is written entirely in Python and is designed
for performance. By default, it calculates transit depths on a fine wavelength grid (𝜆/∆𝜆 = 1000 with 4616 wavelength
points), which takes ~170 milliseconds on a midrange consumer computer. The user can instead specify bins which
are directly relevant to matching observational data, in which case the code avoids computing depths for irrelevant
wavelengths and is many times faster.

Retriever uses TransitDepthCalculator as a forward model, and can retrieve atmospheric properties using either
MCMC or nested sampling. Typically, nestled sampling finishes in < 10 min. MCMC relies on the user to specify the
number of iterations, but typically reaches convergence in less than an hour.

1

platon Documentation, Release 1.0alpha

2 Chapter 1. Introduction

CHAPTER 2

Install

Before installing PLATON, it is highly recommended to have a fast linear algebra library (BLAS) and verify that
numpy is linked to it. This is because the heart of the radiative transfer code is a matrix multiplication operation
conducted through numpy.dot, which in turn calls a BLAS library if it can find one. If it can’t find one, your code will
be many times slower.

On Linux, a good choice is OpenBLAS. You can install it on Ubuntu with:

sudo apt install libopenblas-dev

On OS X, a good choice is Accelerate/vecLib, which should already be installed by default.

To check if your numpy is linked to BLAS, do:

numpy.__config__.show()

If blas_opt_info mentions OpenBLAS or vecLib, that’s a good sign. If it says “NOT AVAILABLE”, that’s a bad sign.

Once you have a BLAS installed and linked to numpy, download PLATON, install the requirements, and install
PLATON itself:

git clone https://github.com/ideasrule/platon.git
cd platon/
pip install -r requirements.txt
python setup.py install

That’s it! To run unit tests to make sure everything runs:

python setup.py test

The unit tests should also give you a good idea of how fast the code will be. On a decent Ubuntu machine with
OpenBLAS, it takes 2 minutes.

3

platon Documentation, Release 1.0alpha

4 Chapter 2. Install

CHAPTER 3

Quick start

The fastest way to get started is to look at the examples/ directory, which has examples on how to compute transit
depths from planetary parameters, and on how to retrieve planetary parameters from transit depths. This page is a
short summary of the more detailed examples.

To compute transit depths, look at transit_depth_example.py, then go to TransitDepthCalculator for more
info. In short:

from plato.transit_depth_calculator import TransitDepthCalculator

star_radius = 7e8 # all quantities in SI
planet_g = 9.8
planet_radius = 7e7
planet_temperature = 1200

calculator = TransitDepthCalculator(star_radius, planet_g)
calculator.compute_depths(planet_radius, planet_temperature, logZ=0, CO_ratio=0.53)

You can adjust a variety of parameters, including the metallicity (Z) and C/O ratio. By default, logZ = 0 and C/O =
0.53. Any other value for logZ and C/O in the range -1 < logZ < 3 and 0.2 < C/O < 2 can also be used. You can use
a dictionary of numpy arrays to specify abundances as well (See the API). You can also specify custom abundances,
such as by providing the filename or one of the abundance files included in the package (from ExoTransmit). The
custom abundance files specified by the user must be compatible with the ExoTransmit format:

calculator.compute_depths(planet_radius, planet_temperature, logZ=None,
CO_ratio=None, custom_abundances = filename)

To retrieve atmospheric parameters, look at retrieve_example.py, then go to Retriever for more info. In short:

from plato.fit_info import FitInfo
from plato.retriever import Retriever

Set your best guess
fit_info = retriever.get_default_fit_info(star_radius, planet_g, planet_radius,

planet_temperature, logZ=0)

(continues on next page)

5

platon Documentation, Release 1.0alpha

(continued from previous page)

Decide what you want to fit for, then set the lower and upper limits for
those quantities

fit_info.add_fit_param('R', 0.9*planet_radius, 1.1*planet_radius)
fit_info.add_fit_param('T', 0.5*planet_temperature, 1.5*planet_temperature)
fit_info.add_fit_param("logZ", -1, 2)

#Fit using Nested Sampling
result = retriever.run_multinest(bins, depths, errors, fit_info)

Here, bins is a N x 2 array representing the start and end wavelengths of the bins, in metres; depths is a list of N transit
depths; and errors is a list of N errors on those transit depths.

The example above retrieves the planetary radius (at a base pressures of 100,000 Pa), the temperature of the isothermal
atmosphere, and the metallicity. Other parameters you can retrieve for are the C/O ratio, the cloudtop pressure, the
scattering factor, the scattering slope, and the error multiple–which multiplies all errors by a constant.

Once you get the result object, you can make a corner plot:

fig = corner.corner(result.samples, weights=result.weights,
range=[0.99] * result.samples.shape[1],
labels=fit_info.fit_param_names)

Additionally, result.logl stores the log likelihoods of the points in result.samples.

If you prefer using MCMC instead of Nested Sampling in your retrieval, you can use the run_emcee method instead of
the run_multinest method. Do note that Nested Sampling tends to be much faster and it does not require specification
of a termination point:

result = retriever.run_emcee(bins, depths, errors, fit_info)

For MCMC, the number of walkers and iterations/steps can also be specified. The result object returned by run_emcee
is slighly different from that returned by run_multinest. To make a corner plot with the result of run_emcee:

fig = corner.corner(result.flatchain, range=[0.99] * result.flatchain.shape[1],
labels=fit_info.fit_param_names)

6 Chapter 3. Quick start

CHAPTER 4

platon

4.1 platon package

4.1.1 Submodules

4.1.2 platon.abundance_getter module

class platon.abundance_getter.AbundanceGetter(include_condensates=True)

static from_file()
Reads abundances file in the ExoTransmit format (called “EOS” files in ExoTransmit), returning a dictio-
nary mapping species name to an abundance array of dimension

get(logZ, CO_ratio=0.53)

is_in_bounds(logZ, CO_ratio, T)

4.1.3 platon.constants module

4.1.4 platon.fit_info module

class platon.fit_info.FitInfo(guesses_dict)

add_fit_param(name, low_guess, high_guess, low_lim=None, high_lim=None, value=None)

freeze_fit_param(name, value=None)

generate_rand_param_arrays(num_arrays)

get(name)

get_guess_bounds(index)

7

platon Documentation, Release 1.0alpha

get_num_fit_params()

get_param_array()

interpret_param_array(array)

within_limits(array)

class platon.fit_info.FitParam(value, low_guess=None, high_guess=None, low_lim=None,
high_lim=None)

within_limits(value)

4.1.5 platon.retriever module

class platon.retriever.Retriever

static get_default_fit_info(g, Rp, T, logZ=0, CO_ratio=0.53, cloudtop_P=1000.0,
log_scatt_factor=0, scatt_slope=4, error_multiple=1,
add_fit_params=False)

run_emcee(wavelength_bins, depths, errors, fit_info, nwalkers=50, nsteps=10000, in-
clude_condensates=True, plot_best=False)

Runs affine-invariant MCMC to retrieve atmospheric parameters.

Parameters

• wavelength_bins (array_like, shape (N,2)) – Wavelength bins, where wave-
length_bins[i][0] is the start wavelength and wavelength_bins[i][1] is the end wavelength
for bin i.

• depths (array_like, length N) – Measured transit depths for the specified wavelength bins

• errors (array_like, length N) – Errors on the aforementioned transit depths

• fit_info (FitInfo object) – Tells the method what parameters to freely vary, and in what
range those parameters can vary. Also sets default values for the fixed parameters.

• nwalkers (int, optional) – Number of walkers to use

• nsteps (int, optional) – Number of steps that the walkers should walk for

• include_condensates (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• plot_best (bool, optional) – If True, plots the best fit model with the data

Returns result – This returns emcee’s EnsembleSampler object. The most useful attributes in
this item are result.chain, which is a (W x S X P) array where W is the number of walk-
ers, S is the number of steps, and P is the number of parameters; and result.lnprobability,
a (W x S) array of log probabilities. For your convenience, this object also contains re-
sult.flatchain, which is a (WS x P) array where WS = W x S is the number of samples; and
result.flatlnprobability, an array of length WS

Return type EnsembleSampler object

run_multinest(wavelength_bins, depths, errors, fit_info, maxiter=None, include_condensates=True,
plot_best=False)

Runs nested sampling to retrieve atmospheric parameters.

Parameters

8 Chapter 4. platon

platon Documentation, Release 1.0alpha

• wavelength_bins (array_like, shape (N,2)) – Wavelength bins, where wave-
length_bins[i][0] is the start wavelength and wavelength_bins[i][1] is the end wavelength
for bin i.

• depths (array_like, length N) – Measured transit depths for the specified wavelength bins

• errors (array_like, length N) – Errors on the aforementioned transit depths

• fit_info (FitInfo object) – Tells us what parameters to freely vary, and in what range
those parameters can vary. Also sets default values for the fixed parameters.

• maxiter (bool, optional) – If not None, run at most this many iterations of nestled sampling

• include_condensates (bool, optional) – When determining atmospheric abundances,
whether to include condensation.

• plot_best (bool, optional) – If True, plots the best fit model with the data

Returns result – This returns the object returned by nestle.sample The object is dictionary-like
and has many useful items. For example, result.samples (or alternatively, result[“samples”])
are the parameter values of each sample, result.weights contains the weights, and result.logl
contains the log likelihoods. result.logz is the natural logarithm of the evidence.

Return type Result object

4.1.6 platon.transit_depth_calculator module

class platon.transit_depth_calculator.TransitDepthCalculator(star_radius, g, in-
clude_condensates=True,
min_P_profile=0.1,
max_P_profile=100000.0,
num_profile_heights=400)

__init__(star_radius, g, include_condensates=True, min_P_profile=0.1, max_P_profile=100000.0,
num_profile_heights=400)

All physical parameters are in SI.

Parameters

• star_radius (float) – Radius of the star

• g (float) – Acceleration due to gravity of the planet at a pressure of max_P_profile

• include_condensates (bool) – Whether to use equilibrium abundances that take conden-
sation into account.

• min_P_profile (float) – For the radiative transfer calculation, the atmosphere is divided
into zones. This is the pressure at the topmost zone.

• max_P_profile (float) – The pressure at the bottommost zone of the atmosphere

• num_profile_heights (int) – The number of zones the atmosphere is divided into

change_wavelength_bins(bins)
Specify wavelength bins, instead of using the full wavelength grid in self.lambda_grid. This makes the
code much faster, as compute_depths will only compute depths at wavelengths that fall within a bin.

Parameters bins (array_like, shape (N,2)) – Wavelength bins, where bins[i][0] is the start wave-
length and bins[i][1] is the end wavelength for bin i.

Raises NotImplementedError – Raised when change_wavelength_bins is called more than
once, which is not supported.

4.1. platon package 9

platon Documentation, Release 1.0alpha

compute_depths(planet_radius, temperature, logZ=0, CO_ratio=0.53, add_scattering=True,
scattering_factor=1, scattering_slope=4, scattering_ref_wavelength=1e-
06, add_collisional_absorption=True, cloudtop_pressure=inf, cus-
tom_abundances=None)

Computes transit depths at a range of wavelengths, assuming an isothermal atmosphere. To choose bins,
call change_wavelength_bins().

Parameters

• planet_radius (float) – radius of the planet at self.max_P_profile (by default, 100,000 Pa).
Must be in metres.

• temperature (float) – Temperature of the isothermal atmosphere, in Kelvin

• logZ (float) – Base-10 logarithm of the metallicity, in solar units

• CO_ratio (float, optional) – C/O atomic ratio in the atmosphere. The solar value is 0.53.

• add_scattering (bool, optional) – whether Rayleigh scattering is taken into account

• scattering_factor (float, optional) – if add_scattering is True, make scattering this many
times as strong. If scattering_slope is 4, corresponding to Rayleigh scattering, the ab-
sorption coefficients are simply multiplied by scattering_factor. If slope is not 4, scatter-
ing_factor is defined such that the absorption coefficient is that many times as strong as
Rayleigh scattering at scattering_ref_wavelength.

• scattering_slope (float, optional) – Wavelength dependence of scattering, with 4 being
Rayleigh.

• scattering_ref_wavelength (float, optional) – Scattering is scattering_factor as strong as
Rayleigh at this wavelength, expressed in metres.

• add_collisional_absorption (float, optional) – Whether collisionally induced absorption
is taken into account

• cloudtop_pressure (float, optional) – Pressure level (in Pa) below which light cannot
penetrate. Use np.inf for a cloudless atmosphere.

• custom_abundances (str or dict of np.ndarray, optional) – If specified, overrides logZ
and CO_ratio. Can specify a filename, in which case the abundances are read from a file
in the format of the EOS/ files. These are identical to ExoTransmit’s EOS files. It is also
possible, though highly discouraged, to specify a dictionary mapping species names to
numpy arrays, so that custom_abundances[‘Na’][3,4] would mean the fractional number
abundance of Na at a pressure of self.P_grid[3] and temperature of self.T_grid[4].

Returns

• wavelengths (array of float) – Central wavelengths, in metres

• transit_depths (array of float) – Transit depths at wavelengths

is_in_bounds(logZ, CO_ratio, T, cloudtop_P)
Tests whether a certain combination of parameters is within the bounds of the data files. The arguments
are the same as those in compute_depths.

4.1.7 Module contents

10 Chapter 4. platon

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

platon Documentation, Release 1.0alpha

12 Chapter 5. Indices and tables

Python Module Index

p
platon, 10
platon.abundance_getter, 7
platon.constants, 7
platon.fit_info, 7
platon.retriever, 8
platon.transit_depth_calculator, 9

13

platon Documentation, Release 1.0alpha

14 Python Module Index

Index

Symbols
__init__() (platon.transit_depth_calculator.TransitDepthCalculator

method), 9

A
AbundanceGetter (class in platon.abundance_getter), 7
add_fit_param() (platon.fit_info.FitInfo method), 7

C
change_wavelength_bins() (pla-

ton.transit_depth_calculator.TransitDepthCalculator
method), 9

compute_depths() (pla-
ton.transit_depth_calculator.TransitDepthCalculator
method), 9

F
FitInfo (class in platon.fit_info), 7
FitParam (class in platon.fit_info), 8
freeze_fit_param() (platon.fit_info.FitInfo method), 7
from_file() (platon.abundance_getter.AbundanceGetter

static method), 7

G
generate_rand_param_arrays() (platon.fit_info.FitInfo

method), 7
get() (platon.abundance_getter.AbundanceGetter

method), 7
get() (platon.fit_info.FitInfo method), 7
get_default_fit_info() (platon.retriever.Retriever static

method), 8
get_guess_bounds() (platon.fit_info.FitInfo method), 7
get_num_fit_params() (platon.fit_info.FitInfo method), 7
get_param_array() (platon.fit_info.FitInfo method), 8

I
interpret_param_array() (platon.fit_info.FitInfo method),

8

is_in_bounds() (platon.abundance_getter.AbundanceGetter
method), 7

is_in_bounds() (platon.transit_depth_calculator.TransitDepthCalculator
method), 10

P
platon (module), 10
platon.abundance_getter (module), 7
platon.constants (module), 7
platon.fit_info (module), 7
platon.retriever (module), 8
platon.transit_depth_calculator (module), 9

R
Retriever (class in platon.retriever), 8
run_emcee() (platon.retriever.Retriever method), 8
run_multinest() (platon.retriever.Retriever method), 8

T
TransitDepthCalculator (class in pla-

ton.transit_depth_calculator), 9

W
within_limits() (platon.fit_info.FitInfo method), 8
within_limits() (platon.fit_info.FitParam method), 8

15

	Introduction
	Install
	Quick start
	platon
	platon package

	Indices and tables
	Python Module Index

